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ABSTRACT
US Landsat and EU Sentinel missions -will shortly- provide
massive multitemporal remote sensing data. Therefore, the
development of efficient technologies for their direct manip-
ulation and processing is of fundamental importance. To-
wards this direction, we present a WebGIS system for the
online analysis of open remote sensing data and for precision
agriculture applications. In particular, the core functional-
ity consists of the Rasdaman Array Database Management
System for storage, and the Open Geospatial Consortium
Web Coverage Processing Service for data querying. Vari-
ous queries have been designed and implemented in order to
access and process multispectral satellite imagery. The We-
bGIS client, which is based on the OpenLayers and GeoExt
javascript libraries, exploits these queries enabling the on-
line ad-hoc spatial and spectral remote sensing data anal-
ysis. The currently under development framework is fully
covering Greece with Landsat 8 multispectral data which
are stored and pre-processed automatically in our hardware
for demonstration purposes. The developed queries, which
are focusing on agricultural applications, can efficiently es-
timate vegetation coverage, canopy and water stress over
agricultural and forest areas. The online delivered remote
sensing products have been evaluated and compared with
similar processes performed from standard desktop remote
sensing and GIS software.

Categories and Subject Descriptors
H.2.4 [Systems]: [Query processing, Heterogeneous Databases,
Database Applications - Image databases]; I.4 [Image Pro-
cessing and Computer Vision]: Computing Methodolo-
gies—General - Image processing software
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1. INTRODUCTION
There is a current need for intensive research, development

and efficient technological solutions towards the exploitation
of the increasing petabyte archives of geospatial (big) data.
Along with the increasing volume and reliability of satel-
lite, aerial, UAV and proximate earth observation sensors,
the need for direct, high performance, big geospatial data
processing and analysis systems, which are able to model
and simulate a geo-spatially enabled content, is greater than
ever.

The opening of the United States Geological Survey’s Land-
sat data archive [20], the newly launched Landsat Data Con-
tinuity Mission [18], the EU Sentinel mission [15] as well as
the EU open data policy [1] enabled the easy access to a
record of historical data and related studies on monitoring
mainly land cover/ land use changes, updating land national
cover maps, detect the spatio-temporal dynamics, the evo-
lution of land use change and landscape patterns.

With this increased data availability and the increasing
open data policies, both in US and EU, research and devel-
opment efforts should reflect the current demand on improv-
ing the capability to process directly big data and enable the
efficient spatiotemporal modelling and monitoring. There-
fore, the development of efficient technologies for the direct
handling and processing on the server-side is of fundamental
importance. In particular, current technological advances in
the fields of computing power, computer resources and Inter-
net speed has opened the way for online big geospatial data
process and analysis enabling applications with significant
scientific and industrial interest [12].

To this end, the developed RemoteAgri WebGIS system,
is presented in this paper, which was designed towards the
online analysis of open remote sensing data and precision
agriculture applications. In particular, the core functional-
ity consists of the Rasdaman Array Database Management



System (DBMS) for storage, and the Open Geospatial Con-
sortium (OGC) Web Coverage Processing Service (WCPS)
standard for data querying. Various WCPS queries have
been designed and implemented in order to access and pro-
cess multispectral satellite imagery. The WebGIS client is
based on the OpenLayers and GeoExt javascript libraries.
The currently under development framework is fully cov-
ering Greece with Landsat 8 multispectral data which are
stored and pre-processed automatically in our hardware for
demonstration purposes. The developed queries, which are
focusing on agricultural applications, can efficiently estimate
vegetation coverage, canopy and water stress over agricul-
tural and forest areas.

2. RELATED WORK
Our WebGIS system (RemoteAgri), that has been de-

signed and developed for the online analysis and visualiza-
tion of open remote sensing data for agricultural applica-
tions, has been inspired mainly by PlanetServer [17] which is
a service component of the EU-funded EarthServer project,
aimed at serving and analyzing planetary data online.

EarthServer project1 is creating an on-demand online open
access and ad-hoc analytics infrastructure for massive (100+
TB) Earth Science data based on leading-edge Array Database
platform and OGC WCPS standard. EarthServer estab-
lishes several, so-called, lighthouse applications, each of which
poses distinct challenges on Earth Data analytics. These
are Cryospheric Science, Airborne Science, Atmospheric Sci-
ence, Geology, Oceanography and Planetary Science. In par-
ticular, for Planetary Science, PlanetServer application is
being developed.

PlanetServer2, is an online visualization and analysis ser-
vice for planetary data that demonstrates how various tech-
nologies, tools and web standards can be used so as to pro-
vide big data analytics in an online environment. It is based
on rasdaman [5],[6] Array DBMS as the data management
platform and OGC WCPS standard [7] which allows sub-
mission of on-demand filtering and processing queries in a
SQL-like query language meaning that it is a high-level,
declarative query language resembling SQL for databases,
but on multi-dimensional arrays. PlanetServer focuses on
hyperspectral satellite imagery and topographic data visu-
alization and analysis, mainly for mineralogical applications.
Apart from the big data analytics part PlanetServer could
aid in collaborative data analysis, as it is capable of sharing
planetary data hosted on a database server and querying
them from either any web client through any supported web
browser or from any online processing service that adheres
to OGC standard interfaces.

3. THE DEVELOPED WEB-GIS SYSTEM
The main objective of this work was to design and imple-

ment a framework for the online analysis of multispectral
satellite imagery for agricultural applications. Various com-
ponents and processing steps are involved in setting, running
and utilizing the developed RemoteAgri WebGIS system.

The core functionality of our developed framework, con-
sists of the Rasdaman Array DBMS for storage of remote

1www.earthserver.eu
2www.planetserver.eu

sensing data and OGC WCPS interface standard for query-
ing them. Rasdaman was selected as the core system of our
implementation due to its proven robustness, novelty and
efficiency in handling big geospatial data.

Currently, remote sensing data that are available in our
database for processing by the RemoteAgri WebGIS sys-
tem, are derived from the Landsat Data Continuity Mission
(LDCM)3. The Landsat 8 OLI and TIRS instruments ac-
quire multitemporal, multispectral data of fairly good spa-
tial resolution. Landsat 8 raw data are downloaded, stored
and pre-processed automatically through our system in a
procedure that is described in subsection 3.1.

Vegetation detection, canopy estimation and water stress
estimation are the key functionalities of the RemoteAgri sys-
tem in its current version. These functionalities that come
in the form of WCPS queries, utilize the Landsat 8 dataset
and OGC WCPS interface standard in order to derive re-
mote sensing information and produce respective color maps
that hold this information.

The current RemoteAgri hardware is a 8-core machine
with 32 GB RAM running Debian GNU/Linux (Release
7.5), Apache Tomcat 6 and the open source rasdaman com-
munity version 8.5. Under this demonstration environment,
the stored and pre-processed remote sensing data are fully
covering the Greek territory providing every apprx. 16 days
satellite imagery from the beginning of the Landsat 8 mis-
sion (February 2013). The migration to a production envi-
ronment is, already, scheduled.

The main components of the RemoteAgri Web-GIS sys-
tem are presented in Figure 1 and are described thoroughly
in the following sections.

3.1 Automated Data Acquisition, Storage and
Preprocessing

As far as the download, storage and pre-processing stages
of remote sensing data through our system are concerned,
a number of Python scripts were developed which control,
facilitate and automate the entire operation. Focusing on
automation, firstly a script responsible for checking in the
Landsat 8 archive for any newly acquired dataset, downloads
any new one that will be found. Then another script archives
the data i.e., uncompresses them and performs all necessary
image pre-processing radiometric correction steps that are
required.

Regarding the radiometric correction steps, the USGS’s
(Unites States Geological Survey) instructions were followed
in using the Landsat 8 product4. The standard Landsat 8
products provided by the USGS EROS Center consist of
quantized and calibrated scaled Digital Numbers (DN) rep-
resenting multispectral image data acquired by both the Op-
erational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS). The products are delivered in 16-bit unsigned inte-
ger format and can be rescaled to the Top Of Atmosphere
(TOA) reflectance and/or radiance using radiometric rescal-
ing coefficients provided in the product metadata file (MTL
file). The MTL file also contains the thermal constants
needed to convert TIRS data to the at-satellite brightness
temperature.

For the conversion of OLI and TIRS band data to TOA

3http://landsat.usgs.gov/
4http://landsat.usgs.gov/Landsat8 Using Product.php
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Figure 1: The components of the RemoteAgri WebGIS system.

spectral radiance the following equation was used:

Ll = Ml ·Qcal + Al (1)

where:
Ll = TOA spectral radiance (Watts/( m2 * srad * μm))
Ml = Band-specific multiplicative rescaling factor from the
metadata.
Qcal = Quantized and calibrated standard product pixel
values (DN).
Al = Band-specific additive rescaling factor from the meta-
data.

For the conversion of DN values to TOA reflectance for
OLI data the following equation was used:

rl′ = Mr ·Qcal + Ar (2)

where:
rl’ = TOA planetary reflectance, without correction for so-
lar angle.
Mr = Band-specific multiplicative rescaling factor from the
metadata.
Ar = Band-specific additive rescaling factor from the meta-
data.
Qcal = Quantized and calibrated standard product pixel
values (DN)

TOA reflectance with a correction for the sun angle is
then:

rl =
rl′

sin(fse)
(3)

where:
rl = TOA planetary reflectance
fse = Local sun elevation angle. The scene center sun ele-
vation angle in degrees is provided in the metadata.

For the conversion of spectral radiance from TIRS band
data to brightness temperature the following equation was
used:

T =
K2

ln(K1
Ll

+ 1)
(4)

where:
T = At-satellite brightness temperature (K).
Ll = TOA spectral radiance (Watts/( m2 * srad * μm)).
K1 = Band-specific thermal conversion constant from the
metadata.
K2 = Band-specific thermal conversion constant from the
metadata.

After the pre-processing stages, data are ready to be in-
serted into the rasdaman database. Thereupon, a final script
reads the delivered metadata and inserts the datasets and
their metadata into the rasdaman database.

3.2 The Rasdaman Array Database Manage-
ment System

Multi-dimensional arrays of large size are not supported
by traditional database management systems. As a conse-
quence, these data are served through custom-made ad hoc
servers which support arrays, but, on the other hand, lack
database features such as query languages, query optimiza-
tion and parallelization, and access-efficient storage archi-
tectures. Array DBMSs however, support multi-dimensional
arrays with unlimited size of dimensions while offering all the
classical databases advantages. Rasdaman’s architecture is
based on transparent array partitioning, called tiling.

The rasdaman database of our system currently contains
multi-temporal imagery from the Landsat-8 satellite that
covers the entire Greek territory (approximately 45 paths
& rows) from the beginning of the mission. Prior to the
ingestion of data in rasdaman a data type for the Landsat-8



data needed to be defined. The definition follows:

struct Landsat8Pixel {unsigned short coastal, blue,

green, red, nir, swir1, swir2, cirrus,

tirs1, tirs2;};

typedef marray <Landsat8Pixel,2> Landsat8Image;

This type definition first defines the ”pixel type” by set-
ting the amount of bands and the value type for each band.
In the second line, a raster type is created using the key-
word ”marray” standing for ”multi-dimensional array” which
is specified as being 2D, with completely open bounds in all
directions; thus the rasdaman server will allow for coverages
at any coordinate and with a dynamically growing extent.

In Section 3.4 the way to derive information from Landsat-
8 datasets will be described using WCPS. WCPS queries in
general use a for-clause to define input data and a return-
clause to define which information is returned and in what
form:

for data in (collection)

return encode(data.band, "form")

In our case, band is replaced by one of the Landsat8 spec-
tral bands as the collection is multiband and form is replaced
with png as the WebGIS client handles image results of PNG
type.

WCPS queries are submitted to the rasdaman database
server through PetaScope component [2]. PetaScope is a
java servlet package which implements OGC standard in-
terfaces thus allowing on demand submission of queries that
process multidimensional arrays. Moreover it adds geographic
and temporal coordinate system support. The result of the
process of the WCPS query is returned to the client from
PetaScope in either textual or image form.

3.3 Web Client
The Web client of the RemoteAgri system is heavily based

on OpenLayers and GeoExt javascript libraries. It utilizes
them so as to place WCPS image results as layers inside a
map. In order to achieve this metadata need to be deter-
mined. These metadata are the coordinates of the vertices
of the bounding box that defines an Area Of Interest (AOI)
that the user has specified and the name of the collection in
the rasdaman database that hosts the image which contains
the given AOI.

The coordinates of the bounding box that defines an AOI
are recorded on completion of the definition of the AOI by
the user. Then a server-side script utilizes them so as to find
the collection that contains the AOI. The returned metadata
are then processed in order to form the WCPS query that
will be sent to PetaScope.

The coordinates that define the areal extent of the AOI are
again used when the result image is retrieved from PetaS-
cope to place the derived PNG image at its correct location
in the WebGIS ’s OpenLayers map. This allows for spectral
data analysis in a WebGIS environment.

RemoteAgri system uses PetaScope and the image layer
capability from OpenLayers to add results obtained from
WCPS to the Openlayers map. The results can therefore be
compared with overlapping visual imagery data from various
sources. In Figure 2 a snapshot of the RemoteAgri system
is displayed.

3.4 WCPS Queries
Once all necessary metadata have been determined the

WCPS query that will process the Landsat 8 dataset is
formed. In this subsection we present the WCPS queries
that have been implemented and are related to certain agri-
cultural applications.

3.4.1 Vegetation Detection
The detection of vegetation and its separation from the

other terrain object and classes is the primary task. How-
ever, the spatial heterogeneity is an important property of
natural landscapes that describes the variability of the ob-
served surface properties in space. Simple vegetation detec-
tion methods which are based on vegetation indices, spectral
band ratios, etc., aren’t separating the different vegetation
types. The landscape of cropland mainly consists of a soil
background and crops. The reflectivity characteristics of
these two surface features differ completely in the red and
NIR bands [10]. The soil spectrum varies over a wide range
of length scales due to soil biogeochemical constituents (tex-
ture, organic matter content), moisture and surface rough-
ness. A decrease in soil moisture causes an increase in the
NIR reflectance of that soil. The relatively high radiation
absorption capacity of chlorophyll in the red band leads to
a decrease or saturation of the red reflectance of a canopy.

In a similar way with recent research efforts [13],[9] and
since the queries do not allow algorithmic iterations during
their parsing the NDVI (Normalized Difference Vegetation
Index) was employed in order to detect the vegetation in
a given region. In particular, the query performs vegeta-
tion detection based on the calculation of NDVI against a
threshold value vd.

NDVI ranges between -1 and 1, with -1 meaning total ab-
sence of vegetation and 1 meaning dense presence of healthy
vegetation. When NDVI is calculated against a threshold
value we are able to discern vegetation, since for a certain
threshold value all pixels that have NDVI value greater than
the threshold indicate vegetation presence with a very high
probability.

An example of a vegetation detection query follows:

// QUERY

// vegetation detection

for c in (L8_im_path_row) return encode

(trim( (char)

((((c.nir - c.red)/(c.nir + c.red )) > vd )

* 255),

{x(22.62990426269617:22.76174020019607),

y(40.54366380985645:40.70209989244132)}

), "png")

3.4.2 Canopy Estimation
Canopy estimation is a key task of fundamental impor-

tance for various agricultural applications. Therefore, given
the importance of pigments to plant functioning, a greater
effort has been concentrated to determine and quantify the
relationship between gross primary production (GPP), and
canopy chlorophyll (Chl) content which is the main photo-
synthetic pigment. Their proxy, the leaf area index (LAI)



Figure 2: The RemoteAgri Web Client for the online analysis of remote sensing data for agricultural appli-
cations. In this particular snapshot, the RemoteAgri system has calculated a false color composite (RGB
654) over an area near Axios Delta in Greece and the result is depicted as an image layer overlay. Regions
covered by any type of vegetation are shown with green color tones, since vegetation strongly reflects in the
NIR band.

which is used as quantitative measures for canopy estima-
tion and plant greenness is related with different vegetation
indices with both broad and narrow bands.

In particular, Baret et al. [4] observed that canopy Chl
content is a close proxy of canopy level N content and claimed
that N status could be assessed through Chl content. Re-
cent studies indicate, also, strong correlations between leaf
chlorophyll (Chl) content and N content [8]. Close rela-
tionships were reported, moreover, between gross primary
production, green LAI and canopy chlorophyll content [11].

Although, there isn’t, still, a universal algorithm or re-
gression model [16] that has been validated for all crops to-
wards the efficient LAI estimation, in this study we employ
the standard NDVI for all observed crops in the agricultural
field. The Canopy Estimation query is based on the vegeta-
tion detection query and hence on the NDVI index.

For those areas that have been detected to contain vegeta-
tion a further classification is performed that indicate pos-
sible relations with crop vigor and LAI. For practical and
visualisation purposes the output is determined by zoning
the different canopy levels. The values of the NDVI which
are greater than a certain threshold (i.e., ce1, ce2, etc.)
are slitted into non overlapping intervals. Each interval is
marked with a different color. Lighter colors indicate less
vigorous crops. The output image of this query is an arti-
ficial color map that holds and pictures all the previously
mentioned information.

The implemented WCPS query script follows:

// QUERY

// canopy estimation

for c in (L8_im_path_row) return encode

(trim(struct{

red: (char)

((((c.nir - c.red)/(c.nir + c.red )) > ce1 ) *

(((c.nir - c.red)/(c.nir + c.red )) <= ce2 )

* 255) +

((((c.nir - c.red)/(c.nir + c.red )) > ce2 ) *

(((c.nir - c.red)/(c.nir + c.red )) <= ce3 )

* 255) +

((((c.nir - c.red)/(c.nir + c.red )) > ce3 ) *

(((c.nir - c.red)/(c.nir + c.red )) <= ce4 )

* 0) +

((((c.nir - c.red)/(c.nir + c.red )) > ce4 ) *

(((c.nir - c.red)/(c.nir + c.red )) <= ce5 )

* 0) +

((((c.nir - c.red)/(c.nir + c.red )) > ce5 ) *

(((c.nir - c.red)/(c.nir + c.red )) <= ce6 )

* 0) ;

green: (char)

..similar..

blue: (char)

..similar..

}, {x(22.62990426269617:22.76174020019607),

y(40.54366380985645:40.70209989244132)}),"png")

3.4.3 Water stress estimation
Along with the crop yield and gross primary production

estimation through the canopy and leaf area index map-
ping, the crop stress estimation is the other key component
for most agricultural applications. Optical remote sensing
techniques has been studied a lot for the detection of stress



RGB 432 TIRS-2 RGB 543

Figure 3: A case study from a Landsat-8 dataset near the Axios Delta, Greece acquired in July 2013. The
natural (RGB 432) color composite is shown in the left part. The TIRS-2 thermal band is shown on the
middle and a false color composite (RGB 543) is shown in the right part.

in vegetation. Various approaches have been developed to
detect water stress from thermal infrared data, including the
crop water stress index (CWSI). Several studies found that
the standard deviation of canopy temperature can be used
to quantify water deficit for low and moderately stressed
crops [14].

Moreover, the accurate and cost-effective monitoring on
water use, quantified at the scale of human influence, has
been a long-standing critical need for a wide range of appli-
cations [3]. Apart from the irrigated water amount, quanti-
fying, furthermore, evapotranspiration from irrigated crops
is vital to management of water resources in areas of wa-
ter scarcity, and detailed maps enable managers to more
judiciously allocate available water among agricultural, ur-
ban, and environmental uses. The actual rate of water use
by vegetation can deviate significantly from potential evap-
otranspiration rates (as regulated by atmospheric demand
for water vapor) due to impacts of drought, disease, insects,
vegetation amount and phenology, and soil texture, fertility
and salinity.

Focusing on a simplified query structure, in order to detect
the different water stress levels we employ the canopy tem-
perature observations which can be used to quantify water
deficit for low and moderately stressed crops. Concentrat-
ing again in the detected vegetation regions the information
from the TIRS thermal sensor is employed. For practical
and visualisation purposes after an initial min−max stretch
on the raw intensity values, the intensity is zoned/mapped
into 6-8 categories by splitting the values into non overlap-
ping intervals (i.e., ws1, ws2, etc.) . The higher the values
the higher the probability of water stress in irrigated crop-
lands. In a similar way with the previous query, the result
is an artificial color map which pictures information regard-
ing the canopy temperature and the associated crop water
stress. The implemented WCPS query follows:

// QUERY

// water stress estimation

for c in (L8_im_path_row) return encode

(trim(struct{

red: (char)

((((c.nir - c.red)/(c.nir + c.red )) > vg ) *

(((c.4 - min(c.4))/(max(c.4)-min(c.4))) < ws1 )

* 51) +

((((c.nir - c.red)/(c.nir + c.red )) > vg ) *

(((c.4 - min(c.4))/(max(c.4)-min(c.4))) >= ws1 )

*(((c.4 - min(c.4))/(max(c.4)-min(c.4))) < ws2 )

* 0) +

((((c.nir - c.red)/(c.nir + c.red )) > vg ) *

(((c.4 - min(c.4))/(max(c.4)-min(c.4))) >= ws2 )

*(((c.4 - min(c.4))/(max(c.4)-min(c.4))) < ws3 )

* 102) +

((((c.nir - c.red)/(c.nir + c.red )) > vg ) *

(((c.4 - min(c.4))/(max(c.4)-min(c.4))) >= ws3 )

*(((c.4 - min(c.4))/(max(c.4)-min(c.4))) < ws4 )

* 0) +

((((c.nir - c.red)/(c.nir + c.red )) > vg ) *

(((c.4 - min(c.4))/(max(c.4)-min(c.4))) >= ws4 )

*(((c.4 - min(c.4))/(max(c.4)-min(c.4))) < ws5 )

* 255) +

((((c.nir - c.red)/(c.nir + c.red )) > vg ) *

(((c.4 - min(c.4))/(max(c.4)-min(c.4))) >= ws5 )

* 255)

green: (char)

..similar..

blue: (char)

..similar..

}, {x(22.62990426269617:22.76174020019607),

y(40.54366380985645:40.70209989244132)}),"png")



Vegetation detection Canopy estimation Water stress estimation

Figure 4: Experimental results from the RemoteAgri server after the application of the ”agricultural” queries
on irrigated croplands near the Axios Delta, Greece. The detected vegetation is shown on the left part in
a binary format. A map displaying the different levels (density) of crop canopy is shown on the middle,
where red and yellow regions have been computed with lower densities and green areas with higher. A map
displaying the different water stress levels associated with the canopy temperature is shown on the right part,
where the yellow and red areas have been detected with higher water stress levels.

4. EXPERIMENTAL RESULTS AND EVA-
LUATION

Several experiments were conducted in different Greek
agricultural regions and at different seasons and dates. The
goal was to tune the different parameters regarding the spe-
cific threshold for the vegetation detection and the zoning
levels, intensity values intervals, when displaying the pro-
duced agricultural maps. However, there is, still, important
work to be done towards the fully automation of the de-
tection procedure since, yet, there isn’t an established and
fully validated operational pre-processing procedure for the
Landsat-8 datasets. In particular, there are still a number
of challenges that should be addressed [19] in order to ex-
ploit raw big remote sensing data and transform them to big
geospatial reflectance surfaces. The most important one is
automation during the main pre-processing procedures for
the radiometric, atmospheric and geometric corrections/ cal-
ibration including i) geometric correction, ii) calibration of
the satellite signal to obtain ’Top of the Atmosphere’ ra-
diance, iii) atmospheric correction to estimate surface re-
flectance, iv) topographic correction, and v) relative radio-
metric normalization between images obtained at different
dates.

In the following Figure 3, Figure 4 and Figure 5 exper-
imental results after the application of the main ”agricul-
tural” queries of the RemoteAgri Web-GIS system are pre-
sented. In particular, results are shown from two Greek

agricultural areas with irrigated croplands. The first one
is near the Axios Delta in the region of Central Macedo-
nia. The summer rice crops are dominating the area (around
70%) while cotton and corn crops follow. This region was
of specific interest due to the importance of a cost-effective
crop canopy and stress estimation after the significant cot-
ton yield loss during 2012. A second case study was near
the Vegoritida Lake in the region of Epirus. The summer
corn crops are dominating the area (around 80%) while other
arable crops and vineyards follow. This region was of spe-
cific interest due to the importance effect of any agricultural
practice in the surrounding NATURA 2000 ecosystem. It
should be noted that during all our experiments all the pa-
rameters where left stable in order to directly compare the
experimental results between the different region and be-
tween several acquisition dates and seasons.

In Figure 2, a snapshot of the RemoteAgri web-client is
shown. The main components of the web-client are demon-
strated. On the left side a listing of the different base layers
of the OpenLayers map can be found along with their Over-
lays which include the help vectors layers as well as the ob-
tained image results from the WCPS. The GeoExt toolbar
lays at the top. Among the different actions, a feature con-
trol is used for drawing a polygon on the OpenLayers map.
This defines an Area Of Interest (AOI) for which the differ-
ent WCPS queries are executed. Furthermore, all the base
layers and overlays are displayed in the map panel. Last
but not least, from the ”Tasks” pop-up window the user can
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Figure 5: Experimental results from the RemoteAgri server after the application of the ”agricultural” queries
on irrigated croplands near Vegoritida Lake, Greece. The detected vegetation is shown on the left part in a
binary format. A map displaying the different levels (density) of crop canopy is shown on the middle, where
red and yellow regions have been computed with lower canopy densities. A map displaying the different
water stress levels associated with the canopy temperature is shown on the right part, where the blue areas
have been detected with low water stress levels.

select the type of the query/task that will be executed on
the selected AOI.

In Figure 3, Landsat-8 data acquired in July 2013 are
shown near the Axios Delta, Greece. The natural (RGB
432) color composite is shown in the left part of the figure.
The TIRS-2 thermal band is shown on the middle and a
false color composite (RGB 543) is shown in the right part
of the figure. In Figure 4, experimental results after the ap-
plication of the main ”agricultural” queries on the irrigated
croplands near the Axios Delta are presented. The detected
vegetation is shown on the left part of the figure in a binary
format. A map displaying the different levels (density) of
crop canopy is shown on the middle of the figure, where red
and yellow regions have been computed with lower densities
and green areas with higher. A map displaying the different
water stress levels associated with the canopy temperature
is shown on the right part, where the yellow and red areas
have been detected with higher water stress levels. These re-
sults have been validated with the same processes performed
under a standard desktop GIS software (QGIS).

In Figure 5, experimental results after the application of
the main ”agricultural”queries of the RemoteAgri system are
presented for the irrigated croplands near Vegoritida Lake,
Greece. The detected vegetation is shown on the left part of
the figure in a binary format. A map displaying the differ-
ent levels (density) of crop canopy is shown on the middle,
where red and yellow regions have been computed with lower
canopy densities. A map displaying the different water stress
levels associated with the canopy temperature is shown on
the right part, where the blue areas have been detected with
low water stress levels. The validation with a standard desk-
top GIS software (QGIS) and the inter-comparison between
these two regions indicated that the canopy levels of the
Axios Delta crops are higher than those near the Vegoritida
Lake. However, the water stress levels in the Axios Delta
crops are, also, higher than those in the Vegoritida region.
This was, also, the case for the other acquisition dates up to

early October where the harvest period has begun for most
of the crops.

5. CONCLUSIONS AND FUTURE PERSPE-
CTIVES

In this paper, a WebGIS system capable of handling and
analyzing online remote sensing data and for agricultural ap-
plications was presented. It was shown, at a demonstration
level, that rasdaman as the back-end, WCPS standard and a
webclient (utilizing the OpenLayers and GeoExt javascript
libraries) as the front-end can be bind together. Based on
this framework the developed RemoteAgri system is a robust
and efficient WebGIS platform with the potential to evolve
to a real-time agricultural monitoring system. Several excre-
mental results from the online delivered remote sensing agri-
cultural map/products have been evaluated, compared and
validated based on similar processes from standard desktop
remote sensing and GIS software.

Future work consists of bulk ingestion of geodata into
the rasdaman database from various sensors and open data
sources in order evaluate its performance on handling and
processing online big geodata. The constant update and
integration of the latest validated radiometric and atmo-
spheric correction practices is on top of the list during the
future development tasks regarding the queries and data pre-
processing scripts. Furthermore, in addition to WCPS stan-
dard we plan to incorporate several other OGC standard
interfaces in our system such as WPS (Web Processing Ser-
vice), WCS (Web Coverage Service) and WMS (Web Map
Service) so as to compensate for more intensive processing
and analysis remote sensing algorithms in order to offer var-
ious Remote Sensing and GIS processing functionalities over
the web. Further development of the webclient is on sched-
ule as well as the development of an Android application so
that our client can be viewed from any mobile device.
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