
Web Processing Service (WPS) Orchestration

A Practical Approach

Dorian Alcacer-Labrador
B.Sc.

University Of Applied
Sciences Osnabrueck -

Faculty of Engineering and
Computer Science

Albrechtstr. 30
Osnabrueck, Germany

d.alcacer@hs-
osnabrueck.de

Felix Bensmann, M.Sc.
University Of Applied

Sciences Osnabrueck -
Faculty of Engineering and

Computer Science
Albrechtstr. 30

Osnabrueck, Germany
f.bensmann@hs-
osnabrueck.de

Prof. Dr.-Ing. Rainer
Roosmann

University Of Applied
Sciences Osnabrueck -

Faculty of Engineering and
Computer Science

Albrechtstr. 30
Osnabrueck, Germany
r.roosmann@hs-
osnabrueck.de

ABSTRACT
The overall experience of any geospatial processing environ-
ment depends on the successful collaboration of different
distributed components, such as clients, web portals, multi-
ple processing-nodes and service discovery-measures. Many
aspects of web service based geospatial processing have al-
ready been tackled and put into action at various operational
levels and by different means. This contribution provides a
brief review of conducted research and work done in the
past. It continues with demonstrating a concept for work-
flow composition based on local and distributed processes.
Therefore a domain-specific language is introduced and the
field of application demonstrated by an accompanying use
case. The overall concept is evaluated using the framing
project RichWPS.

Keywords
Geographic Information System (GIS), Spatial Data Infras-
tructure (SDI), Web Processing Service (WPS), Domain-
Specific Language (DSL), Orchestration.

1. INTRODUCTION
Gathering, linking and processing of data is the key to geospa-
tial analysis and hence the very basis for turning data into
re-usable information. Web based provision and process-
ing of geospatial data can be achieved with service-oriented
architectures (SOA) by means of web services (e.g. [10]).
With the INSPIRE Directive (Infrastructure for Spatial In-
formation in the European Community) [7] put into action
and the increasing capabilities of networks and hardware,
web service based processing has become even more impor-
tant for delivering data and to support and publish pro-
cessing functionality. Firstly web service based process-

ing promises to bring dynamic content to end-users like
researchers or decision makers by using Geographic Infor-
mation Systems (GIS) and WebGIS applications. Secondly
in-house workflows can be realized re-using existing web-
services. Defined and issued by the Open Geospatial Con-
sortium (OGC), the Web Processing Service (WPS) [13] de-
fines an XML based interface for publishing, describing and
executing predefined geographic processes and algorithms in
a standardized and interoperable manner. In the past years
much research has been conducted to investigate the efficient
use of WPS for modeling scientific processes and workflows
by different means.
The following contribution aims at providing a focused over-
view of related work that outlines recent research as well as
examined and given solutions in the field of web processing.
This will be followed by introducing a concept that tries to
apply gained insights to a possible runtime environment for
process-chaining and orchestration. In a third step a first
prototype implementation will be discussed whilst applying
the concept to a given use case. This is followed by a con-
clusion and an outlook towards further research.

2. RELATED WORK
According to the WPS 1.0 specification [13], its purpose is to
serve geospatial related functionality that is encapsulated in
processes. Those processes are made usable via a standard-
ized web service and can thus be chained to achieve greater
tasks. The introduction of process chaining makes any basic
geospatial functionality, scientific methodology or workflow
representable through the use of a process. When also using
third-party web services, chaining is commonly referred to
as web service orchestration (WSO) (e.g. [9]).

In the context of composing the combination of WPS with
the Web Service Description Language (WSDL) and Sim-
ple Object Access Protocol (SOAP) has been reported to
increase the re-use of geospatial web services [10]. Further
research succeeded in chaining processes by using the Busi-
ness Process Execution Language (BPEL) in combination
with an external Web Service Orchestration Engine (WSOE)
[1]. In order to improve the WPS standard itself, others
demonstrated the shift of the WSOE into the Web Process-
ing Service server [15], which enables the dynamic definition



and deployment of new workflows at runtime.

Despite the fact that the use of the WS standards (WSDL,
SOAP, BPEL) is widely accepted in mainstream informat-
ics, that solution, specifically the choice of BPEL, is only
one among many (e.g. [8]). Considering WSO and model-
ing on a bigger scale, like suggested in the context of GEO/-
GEOSS Model Web, various technical and conceptual chal-
lenges when dealing with web service composition are still
immanent and solutions yet to be found [12]. For instance,
at the moment of writing, multiple commercial and open-
source realizations of the WPS 1.0 specification are avail-
able. Considering open source implementations1, it appears
as if the ready-to-use support for the above shown orches-
tration concepts is not yet covered. Moreover, the platforms
notably differ in details of implementation such as the level
of WS standard support, especially when it comes to inter-
face description via WSDL.

In context of WPS, the chaining of processes with custom
XML and subsequent delivery to a WPS server could present
a more robust, time efficient solution with less infrastruc-
ture, effort and general overhead [16]. Moreover, turning
away from the full use of WS standards can be a viable
approach, which is shared by different parties for server-
and client side workflow processing (e.g. [16], [4]). For
example the considered use of a subset of WS standards
(WSDL, SOAP) for client side workflow description and ex-
ecution in combination with SCUFL has been demonstrated
[4]. Those approaches are considered to be steps towards a
smaller technology-stack and eventually less complex con-
cepts, which could lead to a better usability and spread of
technologies at hand.

Another aspect when using web services for geospatial pro-
cessing can be resource efficiency. Especially the recurring
exchange of mass data in terms of redundant transfers of
geospatial data through network interfaces could become
costly and consequently negatively affect the overall pro-
cessing time. There exist various concepts, such as grid-
computation and the moving code paradigm (MC-paradigm),
that deal with those shortcomings [3]. The moving code-
paradigm results from the concept of moving the processing-
algorithm near to the data source. This idea is accompa-
nied by the need for expressing and interpreting geospatial
processes e.g. through a common process algebra and the
intention of providing corresponding processing back-ends.
Another viable concept might be the comprehensive con-
traction of software- and hardware-preconditions needed for
executing additionally installed components [11].

Different solutions for orchestrating have been presented, as
well as their benefits and shortcomings. The approach of
a hard coded chaining, as proposed in the WPS 1.0 stan-
dard, is rigid in that contained instructions cannot be un-
derstood or changes not be made, without an expert and
reasonable effort, considering a full fledged general purpose
language is applied. However, an advantage is the use of con-
trol structures and mechanisms provided by the parenting
language. Another approach, the on-off cascading chaining
is suited at a higher level, but suffers from the lack of re-

1Geoserver V 2.3.4, 52◦ North WPS Server V. 3.2.0 , Dee-
gree V. 3.3.0 and PyWPS V 3.2.1

use options through other users, because there is no central
deployment. Furthermore even in this case the composition
is rather static. A third approach, using an orchestration
engine that executes scripts, seems to be the most practical
approach in that it does not share disadvantages mentioned
afore. Available technologies, particularly BPEL, might be
to complex for domain experts. The WPS 1.0 specification
does not require WPS implementations and individual pro-
cesses to be described using WSDL. The OGC follows the
strategy of propagating self describing services, so any fur-
ther description would be redundant. Also, BPEL does not
offer a graphical notation. The commonly known Business
Process Modeling Language (BPML) cannot be mapped in
a one-to-one fashion to the BPEL notation.

3. RICHWPS ORCHESTRATION
As the chapter related work indicates, various technical ap-
proaches for workflow composition were tested by the com-
munity in the past. Still, developing more complex, dis-
tributed WPS based applications requires experts e.g. for
programming languages and software libraries used. Finally
putting processes, workflows and services into action, e.g.
by means of WSO, requires further expertise and efforts in
terms of invested time and necessary administration.

Nevertheless, orchestration is a traditional approach to deal
with complex scenarios. Complex procedures hidden in black
boxes and incompatible services are wrapped with adapters
and re-offered as new services. Composed processes like
these are already powerful, yet they can still be further
nested within one another to allow workflows with almost
any complexity. However, orchestration in the area of SDIs
on a level known from SOA does not yet exist. WPS of-
fers the ideal interface for workflow publishing: with its
broad design, typical SDI functionality, in particular down-
load and processing services, can be approximated. This
circumstance given, the present work suggests to further in-
vestigate the orchestration within the WPS server, and to
put emphasis on the division between the two domains of
process and workflow definition.

All in all, the framing project RichWPS aims at offering
an easy to use environment for geospatial web service or-
chestration to domain experts without in-depth knowledge
in informatics. The research and development is accompa-
nied by two major use cases that are provided by the Fed-
eral Waterways Engineering and Research Institute (BAW)
and Schleswig-Holstein’s Government-Owned Company for
Coastal Protection, National Parks and Ocean Protection
(LKN) (see chapter use case).

The intended environment issues the graphical modeling of
workflows and the remote testing, profiling, provision and
execution of composed workflows. It consists of three ma-
jor software components. The RichWPS ModelBuilder en-
ables the graphics-aided composition of workflows based on
existing local and distributed processes, and geospatial ser-
vices. It obtains available processes and services from a di-
rectory service, the RichWPS SemanticProxy. Once tested,
a composition can be deployed for production use on the
RichWPS Server. The ModelBuilder is used to manage
the workflows’ lifecycle and is able to visualize results and
debugging-information. The RichWPS Server, developed



by the company Disy Informationssysteme GmbH, provides
three interfaces for the ModelBuilder. One for testing com-
positions, one for profiling and estimating their performance
and a third interface to publish compositions as common
processes. In order to achieve this, the upcoming WPS stan-
dard and its ability to transactionally deploy and undeploy
processes via WPS-T has been adopted.

This contribution focuses on the realization of the composi-
tion, the description and the deployment of executable work-
flows.

3.1 Orchestration Concept
The OE’s architecture is determined by the requirement to
integrate into given SDI structures, to basically comply with
present OGC standards, and to enable the re-use of invested
effort in terms of already implemented WPS processes. Es-
pecially in order to facilitate the re-use of defined workflows,
the current solution rests on the given WPS specification as
standardized interface. Compositions, as well as processes
already available, are encapsulated using WPS, as intended
by the standard. That way, the environment uses the ad-
vantage of an orchestration engine (OE) within an WPS
server in combination with a corresponding workflow defi-
nition language, but avoids the afore-mentioned drawbacks
that an integration of a traditional WSOE in an SDI would
show.

The chosen approach, the combination of OE and WPS in a
single software component, leads to the circumstance that,
beneath remote processes and services, locally stored pro-
cesses can be taken into account as well. For example the OE
is capable to issue calls across the central memory instead
of using network interfaces - a concept, which addresses the
problematic field of mass data transfer. Distinguishing be-
tween local and remote processes also becomes an interesting
aspect, when considering performing the dynamic reconfig-
uration of processes within the composition at runtime. Us-
ing a custom workflow definition language can support those
and further SDI specific issues.

As shown, realizing workflow descriptions and managing
their execution can be achieved with full or part wise use
of the shown WS standards. Nevertheless, recurring and de-
scriptive tasks can often be handled in a streamlined fash-
ion by using internal or external domain-specific languages
(DSLs). Considering available alternatives, a custom lan-
guage, the RichWPS Orchestration Language (ROLA), is
designed with the intend to avoid the use of a) pure pro-
gramming languages (e.g. Java or Python) or b) XML based
definitions like BPEL or custom XML. Doing so, it is as-
sumed that a custom, designed language can be optimized
for the respective task. This can be done with regard to a
smaller syntax, which can arguably reduce complexity, while
enhancing maintainability and readability - a decision that
might also lower many given entrance barriers, and reduce
the needed technology-stack.

3.1.1 ROLA
There exist two different ways of realizing domain-specific
languages; namely internal DSLs or external DSLs. The ma-
jor difference is that internal DSLs share language elements
with the host programming language, whilst external DSLs

are based on custom grammar [6]. The choice whether to
use an internal or external DSL directly affects diverse as-
pects like the portability of the suggested solution, or the
time needed for design and implementation. Relying on a
given language often makes it possible to re-use already de-
fined language elements , such as control structures, which
are essential for workflow definition. Though, internal DSLs
require a predefined host programming language and thus a
specific runtime environment. Compared to that, external
DSLs can be designed and implemented in any given pro-
gramming language but the upfront design and realization
seems to be more complex. Taking these aspects into consid-
eration, an external DSL is used for creating a more specific
description of workflows, that would be readable by domain
experts without programming capabilities.

The language itself is designed to be process and data cen-
tric. To maintain readability, the textual representation is
supposed to be a mere sequential call of available processes.
Though, considering the later interpretation it contains the
necessary information for e.g. parallel processing: the flow
of data from the contracted inputs and outputs and the used
processes. An according graphical notation enables the vi-
sual modeling. The designed notation contains a higher de-
gree of information, which is split into several artifacts whilst
deployment or testing. Among these artifacts is an interface
contraction (process description) and a lean script file.

The implementation of the language takes place in an it-
erative procedure. The first iteration focuses on the basic
language elements, necessary for achieving simple process-
chains. In combination with the given use cases, it serves
as testbed for identifying benefits and shortcomings, as pre-
sented in this work. The second iteration addresses the pa-
rameterization and more extensive use of the WPS proto-
col in order to implement more complex process-chains, and
take advantage of the given specification. However, in order
to approach a more scientific modeling, certain aspects such
as adaptiveness, conditions, loops, basic arithmetic and ex-
ception handling need to be considered as well [2]. Also,
when thinking of data-sources, the fine-tuned selection of
specific datasets, e.g. selecting the n-th element of a collec-
tion, have to be considered. Therefore, the third iteration
focuses on more advanced concepts of workflow modeling.

The language design rests on three key concepts: 1.) Locally
available and remotely bound processes need to be explicitly
distinguished in order to be able to enhance execution. 2.)
Bindings for remote and local processes can potentially be
exchanged by equivalent processes. 3.) Interface contraction
and the workflow description are considered to be two indi-
vidual domains. Even though, they share common elements
and interdepend each other. Separating those concerns aims
at maintaining readability of the script, and is used to hide
protocol complexity wherever possible.

For now, all those measures lead to lean textual manifes-
tation, that deals with process-chaining by providing four
major language elements:

1. References are used to refer to runtime elements, among
these are in- and output parameters defined by the in-
terface description, and free to choose variables that



store intermediate results and values.

in . wps−input− i d e n t i f i e r
out . wps−output− i d e n t i f i e r
var . unique− i d e n t i f i e r

2. Assignments are used to set output parameters or vari-
ables. The use of assignments is subject to restrictions.
E.g values of input parameters can not be altered at
runtime. In combination with references and most ba-
sic datatypes, assignments are used to steer the data
flow right up to output parameters.

out . wps−output− i d e n t i f i e r = var . unique−
i d e n t i f i e r

var . unique− i d e n t i f i e r = in . wps−input−
i d e n t i f i e r

var . unique− i d e n t i f i e r = ”value ”

3. Bindings are used to declare processes, and to define
their respective endpoint. They are identified and re-
ferred to by unique shorthands. Bindings are distin-
guished in local and remote bindings. The listing be-
low shows a local binding. The runtime environment
responsible for execution is instructed not to use exte-
rior interfaces for process calling.

bind process wps−compliant− i d e n t i f i e r
to org / shorthand

The listing below shows a remote binding. Its endpoint
is identified through the classical Uniform Resource
Identifier (URI): protocol, host, port and path. Once
declared, the processing runtime environment has suf-
ficient information for process discovery and retrieval
of process descriptions.

bind process http / https , port , path ,
wps−compliant− i d e n t i f i e r to org /
shorthand

4. Execute Statements are used to bring together refer-
ences and bindings, and to finally execute WPS pro-
cesses. As the listing below shows, bindings are re-
ferred to by their shorthand. The execute statement
itself is divided into two sections. The with section
for input parameterization and the store section for
output parameterization. Unlike assignments, these
sections are used to connect given runtime references
with process specific parameter.

execute org / shorthand
with

in . example as INPUT1
var . example as INPUT2

store
RESULT1 as out . r e s u l t 1
RESULT2 as var . v a r i a b l e

Regarding further iterations, it is likely that the aspect of
readability becomes more important when dealing with more
verbose syntax elements. In order to maintain simplicity,
one strategy at hand is to provide a minimum syntax and
default values. This means that the use of further language

elements and attributes is considered to be optional. Fi-
nally, this concept implies certain default behaviors within
the runtime environment; e.g. the initial handling of errors
or timeouts. However, further language elements such as
assertions for providing more graceful exits are conceivable.

At the present time, the language does not explicitly sup-
port parallel execution. Although, based on the variables
used, parallel operations can be identified and utilized by
the runtime environment. Language elements that set up
the runtime environment’s behavior, like switching features
on and off, are still to be considered.

3.2 Implementation
With the publication of this article, an early prototype of
the RichWPS Server and the needed processes for evaluat-
ing the concept has been realized. Its implementation is
based on Java as programming language, the Xtext frame-
work2 for generating parsers for ROLA-scripts. A further
component, a custom runtime environment or orchestration
engine, is subject to current development by the company
Disy Informationssysteme GmbH. It is embedded within the
open-source 52◦ North WPS Server. Workflow definitions
and interface contracts are deployed using an adaptation of
the WPS-T draft.

The prototype clearly puts emphasis on handling process-
chains, which are derived from the given use cases. Regard-
ing the language and the runtime environment, the key con-
cept of local and remote processing has been realized. The
support of different datatypes is based on the generator- and
parser- implementation of the 52◦ North WPS Server. Still,
addressing the implementation of the orchestration engine,
a major issue will be datatype conversion and the alignment
between the introduced components. Interpreting a ROLA
workflow spans a context in which resolved references and
variables need to be stored at least temporarily. The above
shown language is based on dynamic datatype detection.
This aspect serves the purpose of readability, but confronts
the realizing orchestration engine with challenges. In con-
text of the Web Processing Service the amount of major
datatypes tend to be limited at a first glance, though dealing
with specific subtypes could become complicated. A more
static typecasting was considered but overruled. The reliable
handling of datatypes and subtypes is considered to be done
by included processes. However, depending on the runtime
environment’s implementation, a check whilst execution is
made possible by performing discovery and adhering to the
WPS interface and process contracts.

Pending on the implementation, once loaded information
and transmitted data can be kept within the executing sys-
tem. That way the transcoding of data can be kept to a
minimum, in some cases.

The 52◦ North WPS Server enables developers to provide
fundamental processes by using different programming lan-
guages and techniques3. By using the framework’s internal
interfaces, the current implementation is agnostic to that
circumstance. This empowers the service provider to uti-

2http://xtext.org
3e.g. Java, R, Python



lize given in-house expertise in order to provide fundamental
processes.

4. MACROPHYTE ASSESSMENT - A USE
CASE

The concept of RichWPS orchestration environment was
designed bearing in mind the idea of application in pub-
lic administration. The respected authorities are the Fed-
eral Waterways Engineering and Research Institute (BAW),
and Schleswig-Holstein’s Government-Owned Company for
Coastal Protection, National Parks and Ocean Protection
(LKN). In the context of the recent setup of the MDI-DE
SDI for public information and reporting [14, S. 171ff.], one
of RichWPSs’ aims is to explore how WPS can add value to
current SDIs by means of WPS orchestration. The princi-
ples and use of orchestration have been proofed times before
[8]. The following use case is intended for the demonstra-
tion and verification of the technical implementation and
the suitability for related scenarios. Besides, required/lack-
ing features for accurate application in practice are identified
in this realization.

4.1 Technical implementation
In a first step, a use case scenario provided by LKN is real-
ized. In this scenario a makrophyte assessment is setup in
which the distribution of algae and sears is analyzed aim-
ing at an assessment of the state of the Wadden Sea [5].
The scenario has been realized earlier as a tightly integrated
WPS process which is used for reference. For validation pur-
poses, it is disassembled into various smaller processes and
recomposed using RichWPS orchestration.

Finding the breakpoints is a major issue in this task and
requires knowledge about the greater environment of appli-
cation. However, this task is not considered to be done by
orchestration users. The result may serve as an impression
of which kind of processes may be requested in the future
by LKN. The original process is subdivided into the five
processes: 1) selectReportingArea, 2) selectMSRLD5, 3) se-
lectTopography, 4) intersect 5) characteristics.

The resulting processes are deployed on the OE WPS server
and can be used independently. In a next step the workflow
process is created by composing the processes with the Mod-
elBuilder. Then, the process description is deployed on the
OE. Figure 1 demonstrates the model and listing 1 shows
the corresponding ROLA script.

Figure 1 shows the graphical model of the composition. The
model is to be read from the top to the bottom. Inputs and
outputs of the workflow are displayed as black boxes with
a letter indicating the associated data type, namely ”L” for
literal data, ”B” for bounding box data and ”C” for complex
data. Inputs are at the top of the model and outputs are
at the bottom. The remaining white boxes in the middle
represent the involved processes with their individual inputs
and outputs. The connecting lines indicate the data flow
between the processes and inputs and outputs.

Listing 1: ROLA script for LKN use case scenario
bind process net . d i sy . wps . lkn . p r o c e s s e s .

Se lectReport ingArea to lkn / s e l r e p o r t i n g

bind process net . d i sy . wps . lkn .mpa . p r o c e s s e s
. MSRLD5selection to mpa/ se lmsr ld5

bind process net . d i sy . wps . lkn .mpa . p r o c e s s e s
. SelectTopography to mpa/ s e l t o p o

bind process net . d i sy . wps . lkn .mpa . p r o c e s s e s
. I n t e r s e c t to mpa/ i n t e r s e c t

bind process net . d i sy . wps . lkn .mpa . p r o c e s s e s
. C h a r a c t e r i s t i c s to mpa/ c h a r a c t e r i s t i c

var . area = ”NF”
execute lkn / s e l r e p o r t i n g

with
var . area as area
in . r e p o r t i n g a r e a s as r e p o r t i n g a r e a s

store
r e p o r t i n g a r e a as var . reportingAreasNF

var . area = ”DI”
execute lkn / s e l r e p o r t i n g

with
var . area as area
in . r e p o r t i n g a r e a s as r e p o r t i n g a r e a s

store
r e p o r t i n g a r e a as var . r eport ingAreasDI

( code ommited )

execute mpa/ c h a r a c t e r i s t i c
with

var . r e l evantYear s as r e l evantYear s
var . ex ist ingTopographyYears as

exist ingTopographyYears
var . inter sect ionTide landsReport ingAreasNF

as
inter sect ionTide landsReport ingAreasNF

var . i n t e r s ec t i onTide landsRepor t ingAreasDI
as

i n t e r s ec t i onTide landsRepor t ingAreasDI
var . r e l evantSeag ra s as r e l evantSeag ra s
var . r e l evantAlgea as r e l evantAlgea
var . reportingAreasNF as reportingAreasNF
var . r eport ingAreasDI as report ingAreasDI

store
mpbResultGml as out . mpbResultGml

Listing 1 displays an excerpt of the corresponding ROLA
script. It lists the sequentialized execution steps with the
port mapping. The bindings at the beginning of the script
enable referencing and repeated use of the bound processes.
As figure 1 already indicates, the processes lkn:selectReport-
ingArea and mpa:intersect in the scenario at hand could
be re-used. Also, the ROLA script demonstrates the as-
signment of static literal data to variables and their use in
complexity hiding within the orchestration model.

The ROLA workflow description is offered by the OE as
a regular WPS process ready to be executed by any WPS
client already working with the server. Offering the work-
flow as a process also permits its use in further composition
leading to nested workflows. A process for the generation of
a report in PDF is already at hand and can be added in a
next level surrounding workflow.



Figure 1: Composition model for macrophyte assessment use case scenario

Executing the process results in the delivery of the expected
return values.

4.2 Trends and Shortcomings
Though resulting in the correct results, the amount of time
needed for execution is increasing at about 80% in rela-
tion to the tightly integrated process. The deviation is
mostly caused by additional time for data transport in com-
bination with parsing and generation of exchanged mes-
sages; a circumstance which can part-wisely be considered
as implementation detail and can be improved by different
means. Considering bigger amounts of data, additional fac-
tors, which include hardware and software alike, can affect
the overall processing time. This indicates the need for fur-
ther research to address possible enhancements individually.
Potential fields are the granularity of the processes or a more
efficient internal handover of data.

In hindsight, challenges are found in determining granularity
and re-use ratio of resulting processes. However, the process
in question sets preconditions to breakpoints, so unchaining
of the original process is rather pragmatic. For a proper
and comprehensive orchestration the proceedings should go
the other way around. Therefore, further attention is to be
paid to a thoroughly designed model of processes that are
yet to identify through analysis of further scenarios. At the
moment there are two levels of re-use characterizing the pro-
cesses at hand. Some processes like lkn:selectReportingArea
can be reused within LKN other processes can most likely
be reused in just this scenario like the whole rest. A further
level providing basic geospatial operations is desirable. New

implementations should be realized from the beginning with
the application of WPS in mind.

At this point special attention has to be paid to the newly re-
sulted interfaces of the various processes causing additional
effort for implementing new parsers and generators. In or-
der to keep it at an acceptable level, in the future static
resources could be added along the ROLA script as it is
happening at the moment with static literals. Also, a com-
pany policy defining a set of complex data types for common
use helps to reduce the development of further and further
parser-generator pairs.

For closer integration into existing SDIs, RichWPS should
be extended with support for interaction with further OWSs
and original web services. This will be reevaluated in the
second use case.

5. CONCLUSION AND FURTHER RE-
SEARCH

The work at hand shows a way of describing geospatial work-
flows by means of an individual domain-specific language. It
presents an appropriate orchestration engine and concept.
The orchestration environment targets orchestrating WPS
with its processes. A central concept, the description of
compositions, with a script optimized for its field of applica-
tion has been shown. Although a custom language is used,
interoperability and re-usability is maintained by deploying
workflows on an orchestration engine that also works as a
WPS server. Publishing a composed workflow is achieved
by means of conventional WPS processes, which are ready



for execution through a well defined interface.

By dynamically deploying composed workflows on a server,
administrative overhead that occurs when confronted with
new tasks can be minimized. Using a DSL provides an op-
portunity to specifically address further needs in the area
of application. For the purpose of this project, a custom
language outweighs the use of certain WS-standards. The
current implementation serves as testbed for evolving the
idea, the custom languages and runtime mechanism alike.

For a check up with reality and proof of concept, a real
life use case is implemented by means of an early version of
the environment. It is reasonable that more sophisticated
use cases demand a higher degree of workflow-control such
as loops and explicit exception handling, and more com-
plex algorithms, including for instance options to connect to
different standard services of the OGC standards program.
Because of the all-in-all usability depending on the collab-
oration of all involved software components, more complex
use cases will further evaluate the concept. At the present
time, it can be determined that a thoroughly defined policy
of common processes and data types is a requirement for
successful application.

6. ACKNOWLEDGEMENT
This work was made possible by the German Ministry of Ed-
ucation and Research (BMBF) (RichWPS) and the project
partners, the Federal Waterways Engineering and Research
Institute (BAW), and Schleswig-Holstein’s Government-Owned
Company for Coastal Protection, National Parks and Ocean
Protection (LKN) as well as Disy Informationssysteme GmbH.

References
[1] W. A and A. Zipf. Web service orchestration of OGC

web services for disaster management. Geomatics So-
lutions for Disaster Management, 2007.

[2] A. Akram, D. Meredith, and R. Allan. Evaluation of
BPEL to Scientific Workflows. 1:269–274, 2006.

[3] J. Brauner and T. Foerster. Towards a research agenda
for geoprocessing services. 12th AGILE International
Conference on Geographic Information Science 2009,
1(OGC 2007):1–12, 2009.

[4] J. de Jesus, P. Walker, M. Grant, and S. Groom.
WPS orchestration using the Taverna workbench: The
eScience approach. Computers & Geosciences, 47:75–
86, Oct. 2012.

[5] T. Dolch, C. Buschbaum, and K. Reise. Seegras-
Monitoring im Schleswig-Holsteinischen Wattenmeer
2008. 2009.

[6] M. Fowler. Domain Specific Languages. Addison-
Wesley Professional, 1st edition, 2010.

[7] INSPIRE. Directive 2007/2/ec of the european parlia-
ment and of the council of 14 march 2007 establishing
an infrastructure for spatial information in the euro-
pean community (inspire). 2007.

[8] E. Ivanova. Orchestrating Web Services–Standards and
Solutions. ” Mathematics, Informatics and Computer
Sciences”-St., 2006.

[9] N. Josuttis. Soa in Practice: The Art of Distributed
System Design. O’Reilly Media, Inc., 2007.

[10] C. Kiehle. Business logic for geoprocessing of
distributed geodata. Computers & Geosciences,
32(10):1746–1757, Dec. 2006.

[11] M. Müller, L. Bernard, and D. Kadner. Moving code –
Sharing geoprocessing logic on the Web. ISPRS Journal
of Photogrammetry and Remote Sensing, Mar. 2013.

[12] S. Nativi, P. Mazzetti, and G. N. Geller. Environmen-
tal model access and interoperability: The GEO Model
Web initiative. Environmental Modelling & Software,
39:214–228, Jan. 2013.

[13] OGC. Ogc web processing service (wps) interface stan-
dard. 2007.

[14] A. Rieger, J. Kohlus, and K.-P. Traub. Automa-
tisiertes webbasiertes Verfahren zur ökologischen Bew-
ertung von Makrophyten im Schleswig-Holsteinischen
Wattenmeer. Geoinformationen für die Küstenzone,
Band 4, 2013.

[15] B. Schaeffer. Towards a transactional web processing
service. Proceedings of the GI-Days, Münster, 2008.

[16] B. Stollberg and A. Zipf. Development of a WPS Pro-
cess Chaining Tool and Application in a Disaster Man-
agement Use Case for Urban Areas. ”Proceedings of the
Urban Data Management”, 2009.


