# Online Analysis of Remote Sensing Data for Agricultural Applications

#### Athanasios Karmas\*

Institute for the Management of Information Systems "Athena" Research Center karmas@imis.athenainnovation.gr





#### Konstantinos Karantzalos

Remote Sensing Laboratory National Technical University of Athens karank@central.ntua.gr





#### Spiros Athanasiou

Institute for the Management of Information Systems "Athena" Research Center spathan@imis.athenainnovation.gr









### Motivation

- Exploit Big Earth Observation (EO) Data
  - → Various Sensors, Various Platforms
  - → Various Spatial, Spectral, Temporal properties
- Make EO data a mainstream
  - → Numerous (new) users
  - $\rightarrow$  Easy, ready-to-use geospatial products
- Goal: Geospatial Information, Create Accurate Maps

### Problem to Solve

- Easy access to EO data archives
- Process Multimodal data from various sensors
- Develop efficient Services
- Offer validated Products
  - → Direct processing and analysis of data, online wherever needed
  - → Efficient spatiotemporal modelling and monitoring (agriculture, urban environment, natural disasters, crisis management and assessment)

## Problem to Solve

### **Agricultural Applications**

- Crop monitoring
- Precision farming
- Creation of accurate agricultural maps
- Validated products and agricultural maps
  - → Site-specific decisions
  - $\rightarrow$  In time
  - → Regardless of the areal extent or the ease of physical access

## **Technologies**

Rasdaman Array DBMS for data storage

OGC WCPS interface standard.

GeoExt/OpenLayers javascript libraries

## Developed Platform (I)

- RemoteAgri Web GIS System
  - → Visualization Services
  - → Analysis Services
- Utilizes the Landsat 8 dataset
  - → Open Data
  - → Multispectral, multitemporal satellite imagery
  - → Fairly good spatial resolution (30m/pixel)
- Landsat 8 raw data are downloaded, stored and pre-processed automatically

## Developed Platform (II)

- Core functionality
  - → Rasdaman Array DBMS
  - → OGC WCPS interface standard
- Key features
  - → Vegetation Detection
  - → Canopy Estimation
  - → Water Stress Estimation
- Fully covers Greek territory with Landsat 8 imagery
  - → New dataset every apprx. 16 days
  - → 40 scenes per dataset, averaging apprx. 80GB uncompressed

## RemoteAgri WebGIS System



Figure: The components of the RemoteAgri WebGIS system.

## Implementation Details (I)

### **Automated Collection & Preprocessing subsystems**

- Automated acquisition through Web Harvesting
- Archive and extract compressed data
- Preprocessing to convert to ToA reflectance
- Ingestion in rasdaman

## Implementation Details (II)

#### Rasdaman

- Storage of Landsat 8 multispectral data
- Suitable data types definition

Array types defined with open bounds

## Implementation Details (III)

#### Web Client

- OpenLayers library
- GeoExt library
- Client side scripts
  - → User interaction
  - → Metadata search
  - → Construction of WCPS queries
  - → Communication with the Server

## Implementation Details (IV)

### **Developed Agricultural Queries**

→ WCPS interface standard

- Vegetation Detection
- Canopy Estimation
- Water Stress Estimation

## Vegetation Detection

Calculates NDVI Index

 Creates binary map that distinguishes vegetation from soil and urban environment

## Canopy Estimation

Further classification based on NDVI

- Zoning the different canopy levels
- Monitor vegetation health and growth

## Water Stress Estimation

- At satellite temperature values
- Converted to Celsius Degrees
- Color map that distinguishes different temperature levels
- The higher the temperature the higher the probability of water stress in irrigated croplands
- Must be interpreted in close correlation with the Canopy Estimation query

### Use Case Scenario

- An agricultural association
  - → Overall state of crops
  - → Ability to provide site-specific information
- Irrigated croplands in Axios Delta area in Central Macedonia
  - $\rightarrow$  Rice summer crops (70%)
  - $\rightarrow$  Cotton and corn crops follow

## Results (I)



## Results (II)



## Use Case Scenario(II)

- Canopy Estimation
  - → Crop vigour and state
  - → Site-specific decisions
  - → Vegetation life cycle monitor

## Results (III)



#### Canopy Estimation



## Results (IV)



#### Canopy Estimation



## Use Case Scenario (III)

- Water Stress Estimation
  - → Temperature Map
  - → Information about irrigation failures
  - → Examine if other factors are responsible for high temperature

## Results (V)



#### Water Stress



## Conclusion & Future Perspectives

- Demonstrated the combination of various FOSS technologies
- Presented a robust framework with real time analysis potential
- → Bulk ingestion of geodata from various sensors
- → Further development of the Web Client
- → Incorporation of other OGC interface standards
- → Location based services

## Thank You!

### Online Analysis of Remote Sensing Data for Agricultural Applications

#### Athanasios Karmas\*

Institute for the Management of Information Systems "Athena" Research Center

karmas@imis.athenainnovation.gr





#### Konstantinos Karantzalos

Remote Sensing Laboratory National Technical University of Athens karank@central.ntua.gr





#### Spiros Athanasiou

Institute for the Management of Information Systems "Athena" Research Center spathan@imis.athenainnovation.gr









## Questions

Questions ?

### RemoteAgri WebGIS

- ikaros.survey.ntua.gr/remoteagri
- Demonstration purposes
- RemoteAgri Walkthrough

### **RGB**



### **RGB 543**



### **RGB 654**



### Vegetation Detection



### Canopy Estimation



#### Water Stress Estimation



# The End